A) Recent Research Papers Published in SCI (Science Citation Index) Journals

  1. Ugurlu, Ekin; Baleanu, Dumitru; Tas, Kenan; On the solutions of a fractional boundary value problem, Turkish Journal of Mathematics, 42 (3), 1307-1311, Published: 2018
  2. Ugurlu, Ekin; Baleanu, Dumitru; Tas, Kenan; On square integrable solutions of a fractional differential equation, Applied Mathematics and Computation, 337, 153-157, Published: 2018
  3. Rao, K., Kishore, G., Tas, Kenan, Satyanaraya, S., Ram Prasad, D.; Applications and common coupled fixed point results in ordered partial metric spaces, Fixed Point Theory and Applications, 2017 (1),17, Published: December 01, 2017
  4. Ugurlu, Ekin; Tas, Kenan; A new method for dissipative dynamic operator with transmission conditions, Complex Analysis and Operator Theory, 2018, Vol. 12, (4), 1027-1055. DOI: 10.1007/s11785-017-0732-y, Published: April, 2018
  5. Ugurlu, Ekin; Tas, Kenan; Baleanu, Dumitru; Singular left-definite Hamiltonian systems in the Sobolev space, Journal of nonlinear sciences and applications, Volume: 10, Issue: 8,   Pages: 4451-4458   Published: 2017
  6. Kaushik, S. Kumar, Kenan Tas; A New Class of Contraction in 𝑏-Metric Spaces and Applications, Abstract and Applied Analysis, (2017), Article ID 9718535.
  7. Ugurlu, Kenan Taş; Dissipative operator and its Cayley  transform, Turkish Journal of Mathematics, (2017), Vol. 41, (6), 1404-1432. DOI: 10.3906/mat-1610-83.
  8. E. Ugurlu, D. Baleanu, Kenan Tas; Regular Fractional Differential Equations in the Sobolev Space, Fractional Calculus and Applied Analysis, Vol. 20, (3), (2017),  810–817 , DOI: 10.1515/fca-2017-0041
  9. Sumit Chandok, Kenan Tas, and Arslan Hojat Ansari, Some Fixed Point Results for TAC -Type Contractive Mappings, Journal of Function Spaces, Volume 2016 (2016), Article ID 1907676, 6 pages
  10. P.P.Murthy, Kenan Tas, U.D. Patel, Common fixed point theorems for generalized (ϕ,ψ)-weak contraction condition in complete metric spaces, Journal of Inequalities and Applications, (2015) 2015:139
  11. S. Rathee, A. Kumar, Kenan Tas; Invariant Approximation Results via Common Fixed Point Theorems for Generalized Weak Contraction Maps, Abstract and Applied Analysis, Volume 2014, Article ID 752107, 11 pages, http://dx.doi.org/10.1155/2014/752107
  12. Jain, Kenan Tas, B.E. Rhoades, N. Gupta; Coupled Fixed Point Theorems for Generalized Symmetric Contractions in Partially Ordered Metric Spaces and applications, Journal of Computational Analysis  and Appls., Volume: 16, Issue: 3, 438-454, APR 2014
  13. E. Karapınar, Kenan Tas; Quadruple fixed point theorems for nonlinear contractions on partial metric spaces, Applied General Topology, 15, 1, (2014), 11-24.
  14.  S. Chandok, Kenan Tas; An original coupled coincidence point result for a pair of mappings without MMP, Journal of Inequalities and Applications, 2014: 61, 1-12,  Feb 2014
  15. R.K.Vats, Kenan Tas, V. Sihag, A. Kumar; Tripled fixed point theorems via alpha- series in partially ordered metric spaces, Journal of Inequalities and Applications, 2014: 176, 1-12, May 2014
  16. S.Manro, S.Kumar, S.S. Bhatia , K.Tas; Erratum to “Common fixed point theorems in modified intuitionistic fuzzy metric spaces”, Journal of Applied Mathematics, Feb 2014
  17. E.Karapinar, Priya Shahi, Kenan Tas; Generalized α-ψ-contractive type mappings of integral type and related fixed point theorems, Journal of Inequalities and Applications, 2014: 160, 1-18, March 2014
  18. A.Feza Guvenilir, B. Kaymakcalan, Allan C. Peterson, Kenan Tas; Nabla Discrete Fractional Gruss Type Inequality, Journal of Inequalities and Applications, Article Number 86, FEB 20, 2014
  19. M. Jain, Kenan Tas; A unique coupled common fixed point theorem for symmetric (Phi,Psi)-contractive mappings in ordered G-Metric spaces with applications, Journal of Applied Mathematics, Volume 2013, Article ID 134712, 14 pages, (December 2013)
  20. M.Jain, K. Tas, B.E. Rhoades and N. Gupta; Coupled fixed point theorems for generalized symmetric contractions in partially ordered Metric spaces and applications,Journal of Computational Analysis and Application, Volume 16, No:3, 438- 454, (2014)
  21. Manro, S. Kumar,S.S. Bhatia, Kenan Tas, Common Fixed Point Theorems in Modified Intuitionistic Fuzzy Metric Spaces, Journal of Applied Mathematics, Volume 2013, Article ID 189321, DOI: 10.1155/2013/189321 (September 2013)
  22. M.Jain, K.Tas, S.Kumar, N.Gupta; Coupled fixed point theorems for a pair of weakly compatible maps along with CLRg property in Fuzzy Metric spaces, Journal of Applied Mathematics, Volume 2012, Article ID 961210, 14 pages doi:10.1155/2012/961210 (August 2012)
  23. Karapinar, S. Romeguera, K. Tas; Fixed points for cyclic orbital generalized contractions on complete metric spaces, Central European Journal of Mathematics, 11 (3), pp. 552-560, (2013)
  24. Karapinar, W. Shatanawi, K.Tas; Fixed point theorem on partial metric spaces involving rational expressions, Miskolc Mathematical Notes (August 2012)
  25. Jarad, K.Tas, On Sumudu transform method in discrete fractional calculus, Abstract and Applied Analysis, Vol 2012, doi:10.1155/2012/270106  (August 2012)
  26. F.Jarad, B. Kaymakcalan, K. Tas; A new transform method in nabla discrete fractional calculus, Advances in Difference Equations,(2012), 2012:190, doi:10.1186/1687-1847-2012-190
  27. E. Karapinar, B. Kaymakcalan, K. Tas; On coupled fixed point theorems on partially ordered G-metric spaces, Journal of Inequalities and Applications, (2012), Article no:200, 1-13
  28. M. Jain, K. Tas, S. Kumar, N. Gupta; Coupled common fixed point results involving a (\Phi, \Psi)- contractive condition for mixed g-monotone operators in partially ordered metric spaces, Journal of Inequalities and Applications, (2012), Article no:285, 1-29
  29. Karapinar, G. Petruşel, K. Tas; Best proximity point theorems for KT-types cyclic orbital contraction mappings, Fixed Point Theory, 13 (2) , pp. 537-546, (2012).
  30. Atasever, B. Kaymakcalan,G.Leseja, K.Tas; Generalized diamond- alpha dynamic Opial inequalities, Advances in difference Equations, 2012,2012:109, (August 2012)
  31. P.Murthy, K.Tas, B.S.Choudhary; Weak contraction mappings in Saks spaces, Fasciculi Mathematici, No: 48, (2012)
  32. P.R. Rao, G.N.V. Kishore, Kenan Tas; A unique common triple fixed point theorem for hybrid pair of maps, Abstract and Applied Analysis, (2012), 750403,DOI: 10.1155/2012/750403
  33. Abdeljawad, E. Karapinar, Kenan Tas; A generalized contraction principle with control functions on partial metric spaces, COMPUTERS & MATHEMATICS WITH APPLICATIONS, Volume: 63   Issue: 3   Pages: 716-719, DOI: 3, (FEB 2012)
  34. F.Jarad, Kenan Tas; Application of Sumudu and double Sumudu transforms to Caputo-Fractional differential equations, Journal of Computational Analysis and Applications, Vol.14, No.3, 475-483, (January 2012)
  35. Abdeljawad, E. Karapinar, Kenan Tas; Existence and Uniqueness of a Common Fixed point on Partial Metric Spaces, Applied Mathematics Letters, Vol.24, No: 11, 1900-1904, (2011).
  36. E.Karapinar, Kenan Tas; Generalized C-conditions and related fixed point theorems, Computers and Mathematics with Applications, (2011), doi: 10.1016 / j.camwa.2011.04.035
  37. Thabet Abdeljawad, P.P.Murthy, Kenan Taş, A Gregus type common fixed point theorem of set-valued mappings in cone metric spaces, Journal of Computational Analysis and Applications, Vol.13, No: 4, PP. 622-628  (2011).
  38. P. Murthy, S. Kumar, K. Taş: Common Fixed Points Of Self Maps Satisfying An Integral Type Contractive Condition In Fuzzy Metric Spaces, Mathematical Communications, Vol. 15, No. 2, pp. 521-537, (December 2010)
  39. T. Abdeljawad, E. Karapinar, Kenan Tas; Common Fixed Point Theorems in Cone Banach Spaces, Hacettepe Journal of Mathematics and Statistics, AMG 2010, Special Issue, (2010)
  40. P. Murthy, Kenan Taş: New common fixed point theorems of Gregus type for R-weakly commuting mappings in 2-metric spaces, Hacettepe Journal of Mathematics and Statistics, 38 (3), 285-291, (Dec2009).
  41. B.Fisher, K. Taş: Some results on the non–commutative neutrix product of distributions, INTEGRAL TRANSFORMS AND SPECIAL FUNCTIONS, 20 (1): 35-44 (Jan 2009).
  42. B.Fisher, K. Tas: Commutative convolution of functions and distributions, INTEGRAL TRANSFORMS AND SPECIAL FUNCTIONS, 18 (10): 689-697 (2007).
  43. E.Dinc, D. Baleanu, K.Taş: Fractional wavelet analysis of the composite signals of two-component mixture by multivariate spectral calibration, JOURNAL OF VIBRATION AND CONTROL, 13 (9-10): 1283-1290 SEP-OCT (2007).
  44. E. Dinc, D. Baleanu, K. Taş: Continuous wavelet analysis for the ratio signals of the absorption  spectra of binary mixtures, Chapter of the book; Mathematical Methods in Engineering, Springer-Verlag, Ed. Tas,K., Machado, J.A.T., Baleanu,D.(2007).
  45. B. Fisher, K. Tas:  On the non-commutative neutrix product of the distributions x(+)(\lambda)  and x(+)(\mu), Acta Mathematica Sinica, English Series,Vol.22, No.6, (2006), 1639-1644
  46. D.Baleanu, S. Muslih and K. Tas: Fractional Hamiltonian analysis of higher order derivatives systems, Journal of Mathematical Physics, 47, (2006), 103503. [DOI: 10.1063/1.2356797] .
  47. E.Dinc, A. Ozdemir, D. Baleanu, K.Taş: Wavelet transform with chemometric techniques for quantitative multiresolution analysis of a ternary mixture consisting of paracetamol, ascorbic acid and acetylsalicylic acid in effervescent tablets, Revue Roumaine de Chimie , vol. 57, no. 5, (2006), 505-510.
  48. B.Fisher, K. Taş: On the non-commutative neutrix product of the distributions x(+)(-r) ln(p)x(+)  and x(+)(mu)ln(q)x(+), Integral Transforms and Special Functions, Vol.17, No.7, (2006), 513-519.
  49. B. Fisher, K. Taş:  On the commutative product of distributions, J. Korean Math. Soc., 43, No.2, (2006), 271-281.
  50. B. Fisher, K. Taş:  On the non-commutative neutrix product of the distributions (x^r)(ln^p |x|) and x^{-s}, Integral Transforms and Special Functions, Vol.16, No.2, (2005), 131-138.
  51. Fisher, K. Tas: The convolution of functions and distributions, Journal of Mathematical Analysis and Applications , Vol.306, Issue 1, ( 2005) , 364-374.
  52. Fisher,B., K. Tas: On the composition of the distributions $x_+^{-r}$ and $x_+^\mu$, Indian Journal of Pure and Applied Mathematics, 36 (1), (2005),11-22.
  53. E.Dinc, D. Baleanu, O. Ustundag, K. Tas: Chemometric calibration based on the wavelet transform for the quantitative resolution of two-colorant mixture, Revue Roumaine de Chimie, vol. 50, no. 4, (2005), pp. 283-290.
  54. Fisher,B, Kenan Tas: On the composition of the distributions x^{-1}{ \ln |x|} and x^r_+, Integral Transforms and Special Functions, Vol.16, No.7, (2005), 533-543.